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Simple Summary: The impact of parathyroid hormone-related protein (PTHrP) and parathyroid
hormone receptor 1 (PTH1R or PTHR1) on cancer initiation, growth, and metastasis has been
extensively documented in a number of in vitro and in vivo studies. Despite these findings, the
attempts to target PTHrP/PTH1R signaling in cancer therapy have not produced successful results in
the clinical setting. In light of these conflicting data and conclusions, this review seeks to provide a
comprehensive examination of the role of PTHrP/PTH1R in cancer progression and metastasis, as
well as offer insights for future research efforts in this field.

Abstract: PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor
(GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine
factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote
tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as
drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking
PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic
applications. In light of these conflicting data, we conducted a comprehensive review of the studies
of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations
of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future
research in this field.
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1. Introduction

PTHrP (parathyroid hormone-related protein) is a protein initially isolated from
tumors of patients with humoral hypercalcemia of malignancy (HHM) [1]. Although unde-
tectable in healthy human blood, PTHrP is expressed in diverse normal cells and tissues,
including the cardiovascular–renal system, lungs, bladder, uterus, placenta, mammary
glands, stomach, pancreas, bone, cartilage, and teeth [2]. This suggests that PTHrP may
have far more widespread physiological importance than previously thought. In mammary
gland development, PTHrP is secreted by the epithelial cells in the embryonic mammary
buds, and is necessary for the normal proliferation and differentiation of the surrounding
mesenchymal cells of the mammary buds [3]. Loss of PTHrP can cause developmental
defects in mammary mesenchymal cells [4]. In cartilage and bone development, PTHrP is
expressed in chondrocytes and osteoblasts, and is indispensable for chondrocyte prolifera-
tion, osteoblast formation, and subsequent bone formation [5]. In mice, PTHrP deficiency
leads to defective rib cage formation and death after birth [6]. Newborn PTHrP haploin-
sufficient mice showed low bone mass due to decreased bone formation and increased
osteoblast apoptosis [7].

The association of PTHrP with the syndrome of HHM initially drew attention in the
early 1990s [8]. However, since then, controversial results have been observed and reported
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in both basic [9,10] and clinical studies [11,12]. In mouse models of breast cancer [13,14]
and lung cancer [15], monoclonal neutralizing antibodies (murine [16] or humanized [17])
against PTHrP (1–34) were found to inhibit bone metastasis. Therefore, two clinical trials
(NCT00051779 and NCT00060138) were initiated in 2003 to evaluate the safety, tolerability,
and possible effectiveness of the humanized monoclonal antibody against PTHrP in patients
with breast cancer metastatic to bone, compared to zoledronic acid. However, no results
have been reported since the trials were completed in 2004. Furthermore, studies in vitro
and in vivo, genetically and pharmacologically, have revealed PTHrP’s causative effects in
cancer progression of breast cancer [18], giant cell tumor of bone [19], prostate cancer [20],
pancreatic cancer [21], and kidney cancer [22,23]. These findings suggest that PTHrP could
be a potential anticancer drug target, and the most effective approach for blocking PTHrP
is through monoclonal neutralizing antibodies.

The PTHrP protein exerts downstream effects primarily through binding with PTH1R,
a family B GPCR, and the only receptor for PTHrP. Upon binding, PTH1R transfers the
signal from the ligands and activates the downstream cAMP signaling pathways. While
PTH1R mediates the major actions of PTHrP, the role of PTH1R in cancer and the effec-
tiveness of blocking it have been studied less, compared to PTHrP, partially because of its
significant role in bone. PTH and PTHrP can have anabolic or metabolic effects on bone,
depending on the doses and times of treatment, through the activation of PTH1R [24–29].
In 2002, intermittent treatment of recombinant PTH (1–34) (teriparatide) was approved by
the FDA as the first anabolic drug for osteoporosis [30–34]. However, class B GPCRs, in-
cluding PTH1R, are notoriously difficult to target, especially by small molecule drugs. The
structure and dynamics of the active human PTH1R were not resolved until 2019 [35,36].
Nevertheless, there is considerable interest in developing basic knowledge and achiev-
ing the translational potential for this class of GPCRs [37–41]. In general, GPCRs com-
prise 35% of the current clinical drug targets [42]. Peptide agonists and antagonists are
relatively advanced in the development pipeline [43–47], with one PTH1R antagonist,
(Asn10,Leu11,D-Trp12)-PTHrP (7–34) amide, having been shown to be effective in clear cell
renal carcinoma [22,23]. In addition to its role in bone, PTH1R has also been shown to
mediate cachexia, with adipocyte-specific Pth1r knockout conferring resistance to cachexia
driven by kidney failure and lung cancer [48]. Conversely, intermittent treatment with
recombinant PTH (1–34) (i.e., teriparatide) decreased bone metastasis of breast cancer, and
prolonged survival in a mouse model [49].

To gain a better understanding of the role and mechanism of PTHrP/PTH1R in
pathophysiology, particularly in cancer, a comprehensive review of the current knowledge
on key genes and proteins, signaling pathways, regulation, and mechanisms of action has
been conducted. By assessing the strengths and limitations of these studies, we aim to
shed light on the potential for targeting PTHrP/PTH1R in cancer for better efficacy and
eventual translation into clinical practice. This review aims to contribute to the current
knowledge of PTHrP/PTH1R in cancer by summarizing the existing literature on the topic
and identifying knowledge gaps and future directions for research. The ultimate goal is
to advance the development of effective therapeutic strategies that can improve patient
outcomes in cancer treatment.

2. The PTHrP and PTH1R Proteins
2.1. The Isoforms of PTHrP

The PTHrP protein has three isoforms, namely, 1–139, 1–141, and 1–173 in length,
which result from transcript variants due to alternative splicing [50]. Each isoform is com-
posed of the N-terminal, mid-region, and C-terminal domains (Figure 1). Post-translational
processing at multibasic endoproteolytic sites also generates the N-terminal (residues 1–34),
mid-region (residues 66–94, 88–106), and C-terminal (residues 107–139, 107–111, 122–139)
mature secretory forms of PTHrP [51]. The first 36 residues of the N-terminal fragments
of PTHrP in the corresponding full-length, mature polypeptide chain are functional de-
terminants for the interaction with its receptor, exhibiting PTH-like properties in bone,
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kidney, and cardiovascular systems [52]. Interestingly, both the mid-region and C-terminal
domains have independent biological roles. The mid-region PTHrP, i.e., amino acids (AAs)
38–106, contains a nuclear localization signal (NLS) at AAs 66–106. The NLS mediates
nucleus and nucleolar translocation for both the full-length and the mid-region PTHrP
to act in an intracrine manner [53,54]. The PTHrP in the cytoplasm can translocate to the
nucleus by forming complexes with importin, while the secreted PTHrP can translocate
to the cytoplasm through endocytosis [55]. These nuclear proteins have been associated
with activating the cell cycle, inducing the proliferation of vascular smooth muscle cells,
and prolonging the survival of chondrocytes under apoptotic stimulation [54,56]. However,
the mechanisms underlying these effects of PTHrP in the nucleus remain to be defined.
Interestingly, PTHrP was reported to bind with RNA directly through NLS in the nuclei,
predicting its role in regulating RNA metabolism, such as inhibiting rRNA synthesis [57].
This suggests that PTHrP has a far-reaching role beyond being a hormone and a ligand.
The fragments corresponding to the C-terminal portion of PTHrP were shown to regulate
bone resorption [58] and β-arrestin binding [59]. Engaging both G proteins and arrestins
is not solely the function of the C-terminal portion of PTH1R. The PTH1R core, i.e., the
external linkers (ELs) between transmembrane helices that opens upon receptor activation,
was also shown to have the same function, especially after binding with EL modifying
proteins [60].
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Figure 1. The functional domains of the PTHrP protein. The signal peptide module serves to dock
the nascent peptide to the secretory pathway. “PTH-like” indicates the receptor-binding region, and
“Mid-region” contains the bipartite NLS essential for PTHrP nuclear import; the C-terminal domains
include “osteostatin”, which is involved in bone turnover and β-arrestin binding. The green region
is part of the C-terminal that only exists in PTHrP 1–173 [61]. PTH: parathyroid hormone; PTHrP:
parathyroid hormone-related protein; PKA: protein kinase A; PKC: protein kinase C; NLS: nuclear
localization signals; GPCR: G-protein-coupled receptors.

2.2. The Protein Isoform and Downstream Signaling of PTH1R

The PTH1R receptor is composed of three functional domains. The N-terminal ex-
tracellular domain (ECD) is responsible for recognizing and binding to ligands. The
middle domain of seven transmembrane helices transmits the hormone-binding signal
and interacts with the G protein. The C-terminal intracellular domain receives the signal
and subsequently interacts with G proteins to activate downstream signaling pathways
(Figure 2) [62]. The receptor has a relatively large amino ECD, which plays a crucial role
in initial ligand binding, while the seven helical transmembrane domains and connecting
loops mediate agonist-induced receptor activation and signal transduction events. The
C-terminal tail contains sites involved in mediating ligand-induced receptor internalization,
trafficking, and signal termination events. In response to PTHrP, PTH1R can trigger diverse
downstream signal transduction pathways, including Gαs/cAMP/PKA, Gαq/PLC/PKC,
the Gα12/13/RhoA/PLD pathway, and ERK-1/2/MAPK (Figure 2). The coupling of
PTHrP/PTH1R with ERK/MAPK can go through either the G protein-dependent or the G
protein-independent/β-arrestin-dependent pathway [63,64]. The structure of the complex
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of PTH1R with β-arrestin1 was recently deduced from cross-linking two proteins bearing
unnatural amino acids in the environment of the living cells [65]. Note that other GPCRs,
such as D prostanoid receptor-2 (DP2, Gi-coupled), orphan GPR17 (Gi/q-coupled), and free
fatty acid receptor-2 (FFA2, Gi/q/12-coupled), β-arrestin cannot facilitate ERK activation
in the absence of functional G proteins [66].
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Figure 2. Diagram of ligand binding with PTH1R and the downstream signaling pathway. When
PTH or PTHrP binds to PTH1R, it induces a conformational change in the receptor, leading to the
activation of diverse downstream signal transduction pathways, via either G protein-dependent
or -independent/β-arrestin-dependent mechanisms [52]. GEF: guanine nucleotide exchange factor;
PLD: phospholipase D; MMP: matrix metalloproteinase; EGFR: epidermal growth factor receptor;
MEK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase; PKA: protein
kinase A; PKC: protein kinase C; PLC-β: phospholipase C-β; DAG: diacylglycerol; IP3: inositol
1,4,5-triphosphate.

Both ligand structure–activity relationship and receptor mutagenesis studies have
revealed that the N-terminal (1–34) of PTHrP interacts with PTH1R via a two-component
mechanism, as illustrated in Figure 3 [67]. The segment located at approximate AAs
12–34 interacts with the N-terminal extracellular domain of PTH1R, which is referred to as
site one. On the other hand, the segment at AAs 1–12 interacts with the transmembrane
helices and extracellular connecting loops of PTH1R, and is referred to as site two. The
interaction of PTHrP 12–34 and the ECD of PTH1R accounts for the majority of the binding
affinity, while the interaction between PTHrP 1–12 and site two is responsible for inducing
the conformational change of the receptor, which in turn initiates the downstream signaling
pathway [68,69].

GPCR signaling and function have long been believed to be exclusively at the cell
surface. Since the breakthrough discoveries of nuclear binding sites for their ligands in
1980s, many GPCRs, including PTH1R, have been detected in the cell nuclei [70–74]. Studies
have shown that PTH1R was present in the nuclear/nucleolar compartment. Positive
nuclear staining of PTH1R was shown in various rat tissues, such as the kidney, liver, small
intestine, uterus, and ovary, using immunohistochemistry with the antibody validated in
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PTH1R knockout mice [75]. Moreover, the cellular localization of PTH1R in MC3T3-E1 cells
varies during different phases of the cell cycle. It is predominantly present in the nucleus at
the early interphase, G0/G1, S, and G2 phases, but it decreases to an undetectable level at
prophase and metaphase. The nuclear accumulation remains low until the late phases of
telophase, and the expression pattern becomes similar to that during interphase. Serum
starvation induces PTH1R nuclear localization, and adding serum back to starved cells
restores PTH1R to the cytoplasm [76]. Cytoplasmic localization can also be induced by
PTHrP treatment. The active nuclear transport, cell cycle-dependent localization, and
response to stimuli suggest that the nuclear localization of PTH1R is a critical factor
for cellular function. Therefore, more research is needed to elucidate the mechanism of
PTHrP/PTH1R beyond their well-known interaction at the cell membrane.
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Figure 3. The two-site model describes the interaction between PTHrP/PTH and PTH1R interaction
mechanism. In this model, PTHrP (or PTH) binds to the extracellular domain (ECD) of the PTH1R
at the juxtamembrane region, and then interacts with the transmembrane domain of the receptor
to induce intracellular signaling. This model is supported by experimental evidence showing that
mutations in the juxtamembrane region of PTH1R impair the binding of PTHrP to the receptor and
downstream signaling [52].

Yet, to date, mechanisms of the nuclear translocation remain poorly understood.
Nevertheless, the subcellular trafficking of GPCRs is regulated by members of the Ras
superfamily of small GTPases [74]. The nuclear localization of PTH1R is possibly facili-
tated by a conserved potential NLS at the C-terminus 471–487, because the conservation
of the peptide sequence was observed across species. Mutation of the C-terminal tail or
removal of the residues 475–494 resulted in 50–60% reduction in the internalization of
the ligand-bound receptor [77]. In addition, a putative bipartite NLS has been predicted
for PTH1R [78], which suggests that importin α1 and β may be associated with nuclear
translocations [79]. Conversely, PTH1R was found to coimmunoprecipitate with chromo-
somal region maintenance 1 (CRM1), indicating a possible mechanism for mediating the
nuclear export of PTH1R. Inhibition of CRM1 caused the accumulation of PTH1R in the
nucleus [76].

2.3. The Conformational Changes of PTH1R during Activation and Recycling

PTH1R is the primary receptor for both PTHrP and PTH, while PTH2R is also capable
of binding with PTH to activate the downstream signaling. PTH1R activates several
signaling pathways, including the GαS–adenylyl cyclase–cAMP–protein kinase A (PKA),
the Gαq–phospholipase C (PLC) β–inositol triphosphate–cytoplasmic Ca2+–protein kinase
C pathway, the Gα12/13– phospholipase D (PLD)–transforming protein RhoA pathway,
and the β-arrestin–extracellular signal-regulated kinase 1/2 (ERK1/2) pathway [63,80]
(see Figure 2). The distinct structures of PTH and PTHrP allow for preferential binding
to two different receptor conformations, R0 and RG, respectively. RG-selective ligands,
such as PTHrP (1–36), induce transient cAMP responses derived from signaling complexes
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localized at the plasma membrane, whereas R0-selective ligands, such as PTH (1–34) and M-
PTH (1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14, or Arg19), can induce prolonged
cAMP responses that are derived from complexes associated within endosomes [43]. The
preferences of PTH and PTHrP for binding to the PTH1R conformations are still unclear,
but studies have explored R0 and RG selectivity by developing PTH- or PTHrP-specific
analogs [81,82].

The transient cAMP response is due to the desensitization of the receptor through
β-arrestin binding and internalizing the activated PTH1R to the plasma membrane to
recycle, or traffic to lysosomes for degradation. On the other hand, stabilization of the
β-arrestin–PTH/PTH1R complex can prolong the generation of cAMP and activating
ERK1/2 when still in the endosome. The dissociation of β-arrestin from the PTH/PTH1R
complex terminates cAMP production, and the PTH/PTH1R-retromer complex is formed
after the dissociation of β-arrestin [83]. The retromer complex is involved in late-stage
endosomal sorting and retrograde trafficking of vesicles through the Golgi to the plasma
membrane. A negative feedback loop involving cAMP, PKA, and the vacuolar ATPase
(vATPase) causes the exchange of β-arrestin for the retromer complex [84]. Specifically,
intracellular cAMP activates PKA, which phosphorylates and activates vATPase proton
pumps. These proton pumps progressively acidify the endosome when it moves along
the endocytic pathway, leading to the dissociation of PTH–PTH1R complexes and the
termination of the signaling [82,84].

3. PTHrP/PTH1R Signaling in Tumor Progression and Metastasis
3.1. Diverse Mechanisms of Action Revealed from Preclinical Studies

In vitro studies have shown that synthetic PTHrP (1–34) peptide or overexpression of
full-length Pth1r significantly induces cancer cell proliferation and promotes survival in
various types of cancer, including prostate cancer [48–50], renal carcinoma [78], and breast
cancer [85]. The mechanisms of action, including autocrine, intracrine, and paracrine, have
been demonstrated with or without binding and activation of PTH1R. In vivo studies have
shown that PTHrP plays a causative role in cancer progression, including breast cancer [18],
giant cell tumor of bone [19], prostate cancer [20], pancreatic cancer [21], and kidney
cancer [22,29]. In a mouse model, overexpression of PTHrP (1–87) or PTHrP (1–173) in the
DU-145 prostate cancer cell line significantly increased bone metastasis and caused more
severe osteolytic/osteoblastic-mixed lesions in an intrafemoral injection. Interestingly, more
bone lesions but lower serum PTHrP were observed in mice injected with PTHrP (1–173)
overexpressed DU-145 cells compared to those injected with PTHrP (1–87) overexpressed
cells, highlighting the functional pleiotropism of the different PTHrP domains [86]. The
independent roles of the NLS and the C-terminus of PTHrP in cancer cells, if any, remain to
be determined.

PTHrP mRNA is also detected in human and rat osteogenic sarcoma cell lines, sug-
gesting that PTHrP has an autocrine function in osteosarcoma (O.S.) [81,87–89]. Recent
studies using mice, in which O.S. was generated by osteoblast-specific deletion of p53 and
Rb, showed that both primary tumors and metastasis expressed functional PTH1R [90–92].
Genetic knockdown of Pth1r in primary O.S. cells reduced proliferation, invasion, and the
expression of RANKL in vitro and profoundly inhibited O.S. tumor growth, but increased
differentiation/mineralization of the O.S. tumor cells in vivo [90]. In normal osteoblasts,
Pth1h knockdown or p53-deficiency did not affect cell proliferation. However, ablation
of PTHrP or CREB induced O.S. cells growth arrest and apoptosis, suggesting that O.S.
depends on continuous activation of the PTHrP/PTH1R/PKA pathway [93,94]. This con-
clusion was further supported using transgenic mouse models, sequestering p53 and Rb,
resulting in persistent activation of PKA and causing O.S. initiation and progression [82,95].

Moreover, PTHrP/PTH1R was found to mediate drug resistance in prostate cancer
bone metastasis, possibly through facilitating TGFβ type II receptor (TGFBR2) degrada-
tion [96]. Blocking PTH1R rescued TGFBR2 protein levels in osteoblasts and overcame
enzalutamide resistance in a coculture system of prostate cancer and osteoblast cells, sug-
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gesting PTH1R as a novel target to overcome enzalutamide resistance in prostate cancer
bone metastasis. The remaining questions include whether PTHrP/PTH1R plays roles in
other drug resistance, the translational potentials of blocking the signaling, which is the
better target to block, and what is the better drug among neutralizing antibodies, peptide
antagonists, or small molecule inhibitors.

3.2. Opposite Effects in Tumor-Associated Angiogenesis

Over the past two decades, research has investigated the effects of PTHrP on tumor-
induced angiogenesis. Early reports showed that PTHrP inhibits endothelial cell migration
and angiogenesis by activating PKA, and inhibiting PKA can reverse the antimigratory
and antiangiogenic effects of PTHrP [97]. Similarly, PTHrP (1–34), which lacks the NLS
and acts by binding to PTH1R, was found to inhibit VEGF expression during endochon-
dral bone formation and osteoblast differentiation [98]. However, there have also been
reports of the stimulating effects of PTHrP in tumor-induced angiogenesis. For example,
PTHrP can induce the expression of proangiogenic factors, such as VEGF, in breast can-
cer bone metastasis through PKC-dependent activation of an ERK1/2 and p38 signaling
pathway [99]. Additionally, overexpression of PTHrP in pituitary tumor cells can induce
neovascularization of the xenografts [100]. Mechanistically, recombinant PTHrP (1–34)
increases the capillary formation of endothelial cells through PTH1R activation and cAMP
signaling [98]. Possible explanations for these contradictory findings include different cells,
such as normal vs. cancer-associated endothelial cells, that responded to PTHrP within the
tumor microenvironment.

The pleiotropic actions of PTHrP in endothelial cells and stem-like cells for angio-
genesis may be due to its different domains and biologically active fragments, but more
research is needed to explore this possibility. While most studies have shown that PTHrP
promotes cancer cell proliferation, tumor progression, and metastasis, one study found
that intermittent PTH (1–34) inhibited breast cancer bone metastasis, consistent with the
dose- and time-dependent anabolic and metabolic effects of PTHrP in bone [49]. Therefore,
caution, precision, and careful data interpretation are needed to draw study conclusions
for future translation in patient care. Furthermore, more studies are necessary to uncover
the PTHrP domain-specific effects and the respective autocrine, intracrine, paracrine, and
endocrine signaling.

3.3. Consensus Has Yet to Be Reached: The Elusive Readouts of Targeting PTHrP/PTH1R in
Clinical Studies

Breast cancer clinical studies have generally supported the stimulatory effects of
PTHrP in tumor growth and progression [13,14,18]. Two genome-wide association studies
have also found the PTHrP gene, PTHLH, in a susceptibility locus for both ER+ and ER-

breast cancer [101]. In prostate cancer, PTHrP expression was detected in 33% of benign
prostate hyperplasia, 87% of well-differentiated tumors, and 100% of poorly differentiated
and metastatic tumors, including bone metastatic tumors [102]. PTH1R was found to
correlate with reduced overall survival in breast cancer patients [98] and was detected in
37% of primary tumors, but 81% of the bone metastasis samples, supporting the role of the
PTHrP/PTH1R system in breast cancer bone metastasis. Another study found coexpression
of PTHrP and PTH1R in primary and metastatic cancer cells in matched primary and bone
metastatic tissue from patients with untreated adenocarcinoma of the prostate [103]. The
high frequency of PTHrP/PTH1R activation in metastasis suggests the significant role of
autocrine PTHrP/PTH1R in metastasis. In early-stage lung adenocarcinoma, a positive
correlation was observed between PTHrP (1–34) expression and worse overall survival,
independent of tumor stage, and coexpressing high levels of N-terminal PTHrP and PTH1R
dramatically reduced patients’ overall survival [104].

However, a prospective study over ten years of 402 breast cancer patients found that
PTHrP was expressed in 79% of the primary tumors and was positively associated with
decreased bone metastasis and improved survival [12]. Nevertheless, bone metastasis
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still occurred in patients with PTHrP-positive primary tumors, and interestingly, patients
with PTHrP-negative primary tumors also developed PTHrP-positive bone metastasis [12].
These findings suggest no direct correlation between PTHrP expression in primary tumors
and bone metastasis. Another breast cancer study consistently revealed that PTHrP levels
were lower in malignant tissues than in normal breasts, and low nuclear-localized PTHrP
correlated with unfavorable clinical outcomes. Nuclear PTHrP levels also correlate posi-
tively with nuclear pStat5 levels [102]. Since Stat5 expression and activation in breast cancer
correlated with poor prognosis, it was expected that nuclear PTHrP would be associated
with worse clinical outcomes [105,106]. However, further studies are needed to determine
how these two factors regulate each other, either directly or indirectly.

Studies have demonstrated that in the early stage of tumorigenesis, PTHrP expression
was associated with better survival rates and decreased metastasis in patients with various
types of cancer [12,107–109], suggesting a tumor-suppressive role of cell-autonomous ac-
tions of PTHrP. In later stages, when cancer cells metastasized to the bone, increased PTHrP
by the colonized tumor cells mainly stimulated the secretion of RANKL by osteoblasts
to induce the osteoclast-mediated bone resorption, which releases factors from the bone
matrix to promote the growth of metastasized tumors further [110,111]. These studies
showed the tumor-promoting role of paracrine actions of PTHrP and explained the clinical
findings, indicating the correlation between PTHrP, reduced overall survival, and decreased
metastasis [112,113]. However, the controversial conclusions of these clinical studies on
PTHrP warrant further development of experimental tools, such as specific antibodies,
patient stratification, larger patient pools from multiple centers, and better experimental
design and data interpretation.

3.4. Potential Targeting PTHrP/PTH1R Indirectly in Tumor Progression and Metastasis

In addition to directly inhibiting PTHrP or PTH1R, other approaches have been
explored in cancers, including targeting upstream regulators of the PTHrP expression.
For example, Wnt signaling drives PTHrP expression in highly osteolytic cancer cells,
making it a potential therapy for preventing tumor-induced bone destruction and metastatic
outgrowth [114]. However, inhibiting the Wnt pathway in cancer and metastasis is a
complex challenge that goes beyond PTHrP/PTH1R signaling.

In breast cancer, TGF-β can induce PTHrP secretion by upregulating Gli2 [115,116].
Inhibition of Gli2 significantly reduces MDA-MB-231 cells-induced osteolytic bone le-
sions [115]. In clinical trials (NCT00833417, NCT01108094), inhibition of TGF-β and Gli has
been evaluated [117,118]. Similarly, EGF can induce PTHrP production, and treatment with
EGF receptor tyrosine kinase inhibitors, erlotinib or gefitinib, significantly decreased PTHrP
expression and tumor-induced osteolysis in non-small cell lung cancer cells [119,120]. How-
ever, these upstream regulators have broad and significant roles in cancer and metastasis
beyond PTHrP/PTH1R signaling, raising concerns about the specificity of the inhibitions.

In contrast, one recent study demonstrated the potential of the downstream effectors
of PTHrP. Overexpression of PTHrP (1–139) in breast cancer MCF-7 cells suppressed the
expression and downstream signaling of LIFR, a reported breast cancer tumor suppressor
and dormancy marker [121]. Consequently, the downregulated LIFR promoted MCF-7
cell exit from dormancy, suggesting that inducing and maintaining LIFR, a downstream
factor of PTHrP/PTH1R, might keep tumor cells in a dormant state to prevent overt bone
metastasis in breast cancer.

Overall, more research is needed to understand the context-dependent downstream
signaling pathways and identify novel targets for effective therapies.

4. Conclusions

The roles of PTHrP/PTH1R signaling in cancer progression, metastasis, and tumor
dormancy are context-dependent. Both PTHrP and PTH1R have multiple biologically
active domains, and their isoforms can localize in the cytoplasm or the nucleus, leading to
diversified roles in different cell types. Ligand binding and activation of PTH1R induce
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various downstream signaling pathways, including cAMP, PKA, PKC, and CREB, which
can have different or opposite effects. Moreover, distinct signaling effects can be induced by
effectors that control the PTHrP/PTH1R protein degradation and recycling. The response
of PTHrP/PTH1R target cells, including cancer cells and different cells in the tumor
microenvironments, can differ depending on the stage of disease progression.

Neutralizing antibodies, peptide antagonists, and small molecule drugs have been
developed against distinct domains or motifs of PTHrP/PTH1R complexes. However, most
of these compounds have limited binding affinity and oral stability, resulting in suboptimal
efficacy. Nevertheless, these studies provide good starting points for the optimization of
novel binding reagents [122]. Recently released cryo-EM structures of PTH-PTH1R-Gs
and PTHrP-PTH1R-Gs complexes further contributed to the better development of novel
binding reagents [123,124]. We anticipate the development of selective PTHrP/PTH1R
modulators that adopt the advantages of emerging chemical modalities to overcome the
limitations of current ones. For example, structural modifications including incorporation
of unnatural amino acids (i.e., D-AA), retro-inverso isomers, N-methylation, or stapling
reactions between amino acids may result in better PTH1R binding molecules with com-
parable binding specificity/selectivity and in vivo stability [125]; PTH1R inhibitors can be
conjugated with molecules targeting E3 ligase or lysosome to induce PTH1R degradation
via proteasome or lysosome; a DNA aptamer interrupting PTHrP binding, but not affecting
PTH binding to PTH1R, can be screened de novo based on the cryo-EM structures, and the
aptamers can be further optimized for in vitro and in vivo safe delivery. Our prospective
targeting approaches against PTHrP/PTH1R are depicted in Figure 4. We expect that suc-
cessful development of these novel reagents will significantly advance the understanding
of the context-dependent roles of PTHrP/PTH1R, and eventually translate to the clinic to
target PTHrP/PTH1R in cancer and metastasis. Of course, challenges always accompany
opportunities, such as concerns regarding the permeability of the conjugate of PTH1R
inhibitor and E3 ligase targeting molecule, the efficacy of this approach in degradation
GPCRs, etc. However, several cases have been reported in the degradation of other mem-
brane proteins [126]. Furthermore, membrane-bound E3 ligases may be exploited in the
near future [127]. We expect that successful developments of these novel reagents will
significantly advance the understanding of the context-dependent roles of PTHrP/PTH1R,
and eventually translate to the clinic to target PTHrP/PTH1R in cancer and metastasis.
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